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Abstract

There has been very little empirical analysis of any real
production database workloads. Although The Transac-
tion Processing Performance Council benchmarks C (TPC-
C) and D (TPC-D) have become the standard benchmarks
for online transaction processing and decision support sys-
tems respectively, there has also not been any major effort to
systematically analyze their workload characteristics, espe-
cially in relation to those of real production database work-
loads. In this paper, we examine the characteristics of the
production database workloads of ten of the world’s largest
corporations and we also compare them to TPC-C and TPC-
D. We find that the production workloads exhibit a wide
range of behavior; in some cases, the TPC benchmarks fall
reasonably within the range of real workload behavior, and
in other cases, the TPC benchmarks are not representative of
the real workloads. While the two TPC benchmarks gener-
ally complement one another in reflecting the characteristics
of the production workloads but there are still some aspects

This work has been supported by the State of California under
the MICRO program, and by IBM, Cisco Corporation, Fujitsu Mi-
croelectronics, Intel Corporation, Microsoft Corporation, Quantum
Corporation, Sun Microsystems and Toshiba Corporation.
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of the real workloads that are not represented by either of the
benchmarks. Specifically, our analysis suggests that the TPC
benchmarks tend to exercise the following aspects of the sys-
tem differently than the production workloads: concurrency
control mechanism (TPC-C tends to have longer transactions
and fewer read-only transactions than the production work-
loads while some of TPC-D’s transactions are much longer
but are read-only and are run serially), workload-adaptive
techniques (the production workloads have I/O demands that
are much more bursty), scheduling and resource allocation
policies (unlike TPC-C whose transactions are very regular
and TPC-D where the queries are run serially, the production
workloads tend have many concurrent and diverse transac-
tions), and I/O optimizations for temporary and index files
(TPC-C has no I/O activity to temporary objects while most
of TPC-D’s references are directed at index objects). In this
paper, we also reexamine Amdahl’s rule of thumb for a typ-
ical data processing system (one bit of I/O for every instruc-
tion) and discover that both the TPC benchmarks and the
production workloads generate on the order of 0.5 to 1.0 bit
of logical I/O per instruction, surprisingly close to the much
earlier figure.
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1 Introduction

The Transaction Processing Performance Council (TPC)
benchmarks C (TPC-C) [51] and D (TPC-D) [52] have
emerged as the de facto standard benchmarks for on-line
transaction processing (OLTP) systems and decision support
systems (DSS) respectively. While such standard bench-
marks are important for progress in the field in that they de-
fine the playing field by establishing objectives that are eas-
ily measurable and repeatable, the real utility of the bench-
marks is whether they represent the workloads of interest. To
effectively use a benchmark, therefore, we have to carefully
evaluate its characteristics against those of the target work-
loads to understand how closely they correspond. Although
the TPC-C and TPC-D benchmarks have become widely ac-
cepted and as a result are heavily used for both systems
design and marketing, there has not been any major effort
to empirically determine their workload characteristics, let
alone to establish how representative their characteristics are
of real workloads.

In fact, there has been very little empirical analysis of
any real production database workloads. This reflects the
fact that production systems are by definition critical to the
proper functioning of an organization so that it is very dif-
ficult to get access to them for the purpose of conducting a
scientific study, especially if the study requires any software
changes or if data is to be collected and removed from the
system. Therefore, although the hallmark of a good bench-
mark is that it should capture all the essential characteristics
of the workload of interest without undue complexity, we
often do not have a clear picture of the characteristics of the
target workload. This is highly undesirable because a poorly
designed benchmark may impede real progress in the field
if it is not realistic and end up focusing energy and attention
on issues that do not often arise in production environments.

In this research, we use trace-driven simulations [46, 54]
to empirically examine the characteristics of the peak pro-
duction database workloads of ten of the world’s largest cor-
porations as well as workloads similar to the TPC-C and
TPC-D benchmarks1. Our main focus in this paper is on
what we call descriptive system-level characteristics. These
are the logical properties of a workload that a user or system
administrator can readily understand and relate to without
requiring detailed knowledge of the internals of the system.
We compare and contrast such characteristics of the produc-
tion workloads with those of the TPC benchmarks, paying
special attention to any performance implications. In a com-
panion paper [20], we examine in detail the I/O reference

1Because our TPC benchmark setups have not been audited per
the benchmark specifications, our workloads are technically not
TPC benchmark workloads and should only be referred to as TPC-
like. In the rest of this paper, when the terms TPC-C and TPC-D
are used to refer to our benchmark workloads, they should be taken
to mean TPC-C-like and TPC-D-like respectively.

behavior of the workloads.
The traces used in this study were collected on systems

running IBM’s industrial-strength DB2 relational database
management system (DBMS) and to the best of our knowl-
edge, represents by far the most complete and diverse set of
production workloads ever reported on in the literature. We
cannot overemphasize the amount of time, effort and cost
that these traces represent. This research would not have
been possible without the support and help of many.

The rest of this paper is organized as follows. Section
2 contains a brief overview of previous work in the area of
workload characterization and analysis. Section 3 discusses
our methodology and describes the traces that we use. The
characteristics of our workloads are presented in Section 4.
Concluding remarks appear in Section 5 and acknowledge-
ments in Section 6. Because of space constraints, we can
only highlight some of our analysis results in this paper.
More detailed graphs and data are available from our web
site [22].

2 Related Work

There have been several published studies of the refer-
ence behavior of database workloads, especially that of hi-
erarchical and network databases. See for instance [7, 12,
17, 26, 27, 41, 44, 55, 58]. For a more complete bibliog-
raphy, the reader is referred to [20]. Unfortunately, most
of these studies do not provide descriptive characteristics
of the workloads being analyzed even though the reference
behavior clearly depends on the workload imposed on the
database. Without knowing the kinds of workload that are
being analyzed, interpreting the results of the studies is very
difficult. Consequently, there seems to be conflicting conclu-
sions as to whether locality or sequentiality is present in the
database reference stream. [58], which investigated design
issues in disk caches using data from several commercial in-
stallations including both IMS and DB2 customer sites, is
one of the notable exceptions that provides some character-
istics of the workloads analyzed. In addition, a recent study
of lock contention in database systems contains some trans-
action statistics based on traces taken from three commercial
DB2 installations [43].

Though the TPC-C [51] and TPC-D [52] benchmarks
have clearly been extensively studied and optimized by both
database and system vendors, there has not been any sys-
tematic attempt to characterize these workloads empirically
and to compare their characteristics with those of production
database workloads. Based on static analysis of accesses to
tables, [31] looked at the skewness in the data access of TPC-
C. [53] contains an empirical study of how the database size,
buffer size and the number of CPUs affect the throughput
and buffer hit rate of TPC-C on symmetric multiprocessors
(SMPs). Recently, [21] analyzed the query plans taken from
a recently certified TPC-D setup and considered the potential
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benefit of offloading TPC-D operations to storage systems
with embedded processors.

[35, 50, 57] studied file reference characteristics on time-
shared VAX-11/780s in an academic environment. The mea-
surements show that most of the accessed files are small,
though large files account for a large fraction of the bytes
moved. Similar file usage patterns are reported in a sub-
sequent study conducted on a collection of about forty 10-
MIPS workstations running the Sprite operating system in
a comparable academic environment [5]. There have been
several other studies that focused on the effectiveness of
caching in the filesystem [14, 56]. An analysis of the file us-
age patterns in commercial computing environments is pre-
sented in [40]. Unlike most other studies that were based
on data from academic or research environments, this study
was based on traces collected at eight different and relatively
large VAX/VMS customer sites. The workload at these sites
included program development, scientific computing, office
applications, transaction processing and batch environments.
The analysis reveals that a relatively small percentage of the
files are active and that a very small number of files account
for most of the operations.

There is a large body of work on characterizing sci-
entific workloads in parallel and supercomputing environ-
ments. See for instance [6, 9, 33, 34, 36, 37, 39]. In general,
scientific vector applications tend to have large I/O request
sizes and large files. Parallel scientific workloads tend to
have smaller I/O request sizes.

3 Methodology

The methodology used in this paper is trace-driven simu-
lation [46, 54]. In trace-driven simulation, relevant informa-
tion about a system is collected while the system is handling
the workload of interest. This is referred to as tracing the
system and is usually achieved by using hardware probes or
by instrumenting the software. In the second phase, the re-
sulting trace of the system is played back to drive a model of
the system under study. In other words, trace-driven simula-
tion is a form of event-driven simulation where the events are
taken from a real system operating under conditions similar
to the ones being simulated. More comprehensive discus-
sions of this technique and its strengths and weaknesses can
be found in [46, 54].

The traces used in this study were collected by instru-
menting commercial DBMSs. Instrumenting the DBMS al-
lows the trace information to be collected at a logical level.
This reduces dependencies on the system being traced and
allows the trace to be used in a wider variety of studies, in-
cluding those in which the models are somewhat different
from the original system. In this study, we examined a total
of 14 traces representing both industry standard benchmarks
(TPC-C and TPC-D [51, 52]) and the production work-
loads of ten of the world’s largest corporations. The bench-

mark traces were collected on a multiprocessor Personal
Computer (PC) Server running DB2/Universal Database
(DB2/UDB) V5 [25] on Windows NT 4.0. The production
traces were collected on IBM mainframes running various
versions of DB2/MVS, now known as DB2/390 [23].

In order to make our characterization more useful for
subsequent mathematical analyses and modeling by others,
we fitted our data to various functional forms through non-
linear regression which we solved by using the Levenberg-
Marquardt method [38]. When appropriate, we also fitted
standard probability distributions to our data by using the
method of maximum likelihood to obtain parameter esti-
mates and then optimizing these estimates by the Levenberg-
Marquardt algorithm [38].

3.1 Trace Collection

We instrumented DB2/UDB at the source level to col-
lect relevant trace information for the TPC benchmarks. Be-
cause the act of tracing a system may affect its behavior, we
paid special attention to minimizing any such disturbances.
For instance, our tracing facility collects the trace records in
shared memory before batch writing them asynchronously
to disk. The shared memory buffer is double buffered so
that trace collection is not blocked during write-backs. Each
trace record is time-stamped with minimal overhead by di-
rectly accessing the processor cycle counter. At certain trace
points, it is expensive to collate all the interesting informa-
tion. In such cases, enough data is written to the trace so
that an off-line post-processing step can be used to recon-
struct the information. We collected trace records for both
logical and physical reads and writes, prefetch requests ini-
tiated by DB2, references to the database log and transaction
starts and ends. By comparing the TPC-C throughput results
when trace collection is enabled and disabled, we estimate
that this tracing mechanism imposes an overhead of less than
5%. This figure is dramatically lower than tracing overheads
that have been previously observed; GTF tracing can require
over 50% of the CPU time.

The production traces were collected using a custom
DB2/390 tracing package developed at IBM’s Almaden Re-
search Center. This tracing package is designed to collect
trace data with a minimum amount of overhead so that it can
be run on customer production systems with little through-
put impact. It is built upon the existing DB2 Instrumentation
Facility and its performance trace [24]. The basic approach
is to use a DB2 exit routine to collect the required data from
a specially instrumented DB2 build. The collected data are
assembled into trace records and stored in large memory
buffers that are tracked by a task operating asynchronously
in another address space. When a buffer becomes full, this
other task batch writes the trace records to disk or more typ-
ically, to tape cartridges that are either stacked or housed
in multiple tape units. This tracing package collects trace
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Transaction Min. % Profile Description

New Order - Mid-weight, read-write, online response
time requirement

Initiates an order for an average of 10 items.

Payment 43 Light-weight, read-write, online response
time requirement

Updates the customer’s balance and reflects the payment on the
district and warehouse sales statistics.

Order Status 4 Mid-weight, read-only, online response
time requirement

Queries the status of a customer’s last order.

Delivery 4 Mid-weight, read-write, relaxed response
time requirement

Processes a batch of 10 new orders, one for each district for a
given warehouse.

Stock Level 4 Heavy, read-only, relaxed response time
requirement

Counts the number of items in the last 20 orders in a district that
fall below the stock threshold.

Table 1: Summary of TPC-C’s Transactions. The benchmark specifies the minimum percentage of transactions that are Pay-
ment, Order Status, Delivery and Stock Level transactions. New Order transactions, whose completion rate determines the
TPC-C performance metric, make up the remainder.

records for buffer manager requests, transaction boundaries,
and locking events. In tests conducted on an IBM 4381-T92
when handling a DB2 transaction oriented workload at 70%
CPU utilization, the trace collection added only about 4% to
the CPU utilization.

The buffer pool interface in both DB2/UDB and
DB2/390 allows pages to be “fixed” or pinned in mem-
ory [11, 48]. Once a page is fixed, the buffer pool interface
can be bypassed so that data within the page can be directly
manipulated by the various DBMS components. This allows
the DBMS components to use the buffer pool as working
storage, thereby eliminating the need for the components to
make local copies of the data. Consequently, there are ref-
erences within the pinned pages that result from the direct
manipulations by the DBMS components that are using the
buffer pool as working storage. Since our traces were col-
lected at the level of the buffer pool interface, they do not
contain such references reflecting direct use of buffer pool
storage as working storage.

3.2 Workload Description

The TPC-C benchmark is designed to model the work-
load of complex OLTP application environments [51]. To
help users relate to the components of the benchmark, the
benchmark has been given the life-like context of a whole-
sale supplier. The workload is centered around the order
processing operations of this supplier, operations that are
typical of companies that manage, sell or distribute prod-
ucts/services.

The supplier portrayed by the benchmark has a number
of geographically distributed sales districts and associated
warehouses. Each regional warehouse covers 10 districts
each of which serves 3000 customers. Each district handles
its customer information and the new orders placed by the
customers. In addition, each district maintains the status of

its orders and the history of customer orders. The status of
each item ordered is tracked through an order-line table. All
the warehouses maintain stocks for the 100,000 items sold
by the company. As the supplier’s business expands, new
warehouses and associated sales districts are created.

A direct translation of this business context into a
database design results in the nine tables specified in
the benchmark: WAREHOUSE, DISTRICT, CUSTOMER,
ORDER, NEW-ORDER, ORDER-LINE, STOCK, HIS-
TORY and ITEM. Following the assumed business expan-
sion path, the number of warehouses is the base unit of scal-
ing for the TPC-C database. All other tables, except ITEM,
scale with the number of warehouses according to the above-
mentioned ratios. Our TPC-C trace was collected on a setup
with 800 warehouses. The TPC-C transaction mix is de-
signed to represent a complete business cycle. It consists
of business transactions that enter new orders, query the
status of existing orders, deliver outstanding orders, enter
payments from customers and monitor warehouse stock lev-
els. These five transaction types are summarized in Table 1.
The TPC-C performance metric is the number of orders pro-
cessed per minute.

To increase its realism, the TPC-C benchmark attempts
to model several real world concepts such as distributed sys-
tems, data entry errors and access skew. The benchmark
specifies that 1% of all items ordered are not in-stock at the
regional warehouse and must be supplied by another ware-
house. In addition, 1% of the New-Order transactions are
chosen at random to simulate data entry errors to exercise the
performance of rolling back update transactions. However,
by disallowing the use of the input data from a rolled back
transaction for a subsequent transaction, the benchmark does
not attempt to model the resubmission of failed transactions.

Perhaps the most important aspect of the benchmark is
that it is designed to model non-uniform data access. In par-
ticular, accesses to the CUSTOMER, ITEM and STOCK ta-
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bles are skewed according to pre-specified non-uniform dis-
tributions. As reported in [31], the largest skew is seen in the
STOCK table, where with proper tuple arrangement permit-
ted by the benchmark, 84% of the accesses go to about 20%
of the hottest pages. This is similar to the familiar “90/10”
or “80/20” locality rule. The entire TPC-C benchmark is
motivated and described in detail in [51].

While the TPC-C benchmark models the operational end
of the business environment where real-time transactions are
processed, the TPC-D benchmark models the analysis end of
the business environment where trends are analyzed and re-
fined to support sound business decisions. As is the case
for the TPC-C benchmark, the TPC-D benchmark is given
the realistic context of a wholesale supplier to help the user
relate intuitively to the components of the benchmark. The
TPC-D benchmark has eight required tables: REGION, NA-
TION, SUPPLIER, PART, PARTSUPP, CUSTOMER, OR-
DER, and LINEITEM. The benchmark takes a scaling factor
as parameter to determine the size of the tables. Our trace
was taken on a setup of scale 30, which means that the two
largest tables, ORDER and LINEITEM, contained 45 mil-
lion and 180 million tuples respectively.

The TPC-D benchmark is comprised of a set of 17 busi-
ness queries chosen to have broad industry-wide relevance.
The TPC-D queries are far more complex than most OLTP
transactions and typically examine large volumes of data us-
ing a rich set of operators and selectivity constraints. The
TPC-D database is neither a one-time snapshot of a busi-
ness operations database nor a database where OLTP ap-
plications are running concurrently. Rather, it is a decision
support database that tracks, possibly with some delay, the
OLTP database through batch updates. To exercise the up-
date functionality of the DBMS, the TPC-D benchmark in-
cludes 2 update functions that modify a small percentage of
the database. Table 2 summarizes the 17 queries and 2 up-
date functions that make up the TPC-D benchmark.

The TPC-D benchmark defines a power test to measure
the raw query execution power of a system with a single ac-
tive user. It also defines a throughput test that a user may
elect to omit. Our trace captures the entire run of a power
test. The test starts off with the first update function (UF1).
Next, the 17 queries are processed in a sequence specified by
the benchmark. Finally, the second update function (UF2) is
executed. Note that unlike the TPC-C benchmark, the TPC-
D benchmark does not attempt to model data skew. More
details about the TPC-D benchmark can be found in [52].

Both our TPC-C and TPC-D traces were collected in gen-
eral compliance with the benchmark specifications. One no-
table exception was the TPC-C requirement that the transac-
tion per minute to warehouse ratio be within the range of 9
to 12.7. We intentionally violated this requirement in order
to trace a larger database. In addition, since we are primar-
ily interested in the server workload, we did not go to the
expense of setting up remote terminal emulators to generate

the transactions for TPC-C. Instead, all our transaction re-
quests were generated from a single client machine with no
think time between transactions. Because the TPC bench-
mark rules prohibit publicly disclosing TPC performance
figures that have not been independently audited, we with-
hold from this paper any data that may be used to derive our
TPC metrics. This omission of absolute TPC performance
numbers should not compromise our understanding of the
logical characteristics of the benchmarks.

Our other traces were collected in the day-to-day produc-
tion environments of a diverse group of very large corpora-
tions. The industries represented include aerospace, bank-
ing, consumer goods, direct mail marketing, financial ser-
vices, insurance, retail, telecommunications and utilities. In
all cases, our traces include the peak production database
workload as identified by the system managers. This is
typically a combination of transaction processing and long-
running queries. The trace referred to as Telecom in [58]
and Phone in [43] is the first 30 minutes of the trace we call
TelecomB1.

3.3 Trace Description

Table 3 summarizes the characteristics of the various
traces that are used in this paper. Because of the large num-
ber of production workloads, we often also present the arith-
metic mean of their results. This is denoted as “Prod. Ave.”
In the table, the termobject refers to a logical collection
of data, such as a database table or an index, that is man-
aged as an entity in much the same way as a file.Data size
represents the total size of all the objects in the system and
was obtained from the catalog dumps that were taken when
the systems were traced. Thefootprint of a trace is defined
as the amount of data referenced at least once in the trace.
The traces record information from the perspective of the
DBMS. Therefore, the object count includes DBMS system
objects such as catalogs, views and query plans. In addition,
the transactions recorded are database transactions, several
of which may be needed to perform a single business trans-
action. The production traces were taken off the primary
systems in use at some of the world’s largest corporations
in the early nineties. Though these databases were consid-
ered very large a few years ago, they are comparable in size
to the TPC benchmark databases that can be supported on a
high-end multiprocessor PC server today.

Figure 1 plots the trace footprint as a function of the num-
ber of references, which is a measure of the trace length. Be-
cause there is a wide variation in the footprint of our traces,
we plot the footprint as a percentage of the total data size of
the workload and use two different scales in Figures 1(a) and
1(b) to facilitate comparison among the workloads. From
the figures, only the TPC-D, Bank, ConsGds and TelecomA
traces approach steady state in the sense that they do not
appear to be actively referencing new data. Though the ar-
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Query Name Description

UF1 New sales
update

Adds new rows representing 0.1% of the initial population to the ORDER and LINEITEM tables to emulate the addition of new
sales information.

Q1 Pricing summary
report

Provides summary pricing report for all parts shipped as of a given date which is within 60-120 days of the greatest ship date
in the database.

Q2 Minimum cost
supplier

Finds the supplier who can supply a given part in a given region at the lowest cost. If several suppliers tie, lists the suppliers
with the 100 highest account balances.

Q3 Shipping priority Retrieves the shipping priority and potential revenue of orders that have the largest revenue among those that have not been
shipped as of a given date. Orders are listed in decreasing order of revenue up to a maximum of ten orders.

Q4 Order priority
check

For each order priority, counts the number of orders entered in a given quarter in which at least one lineitem was received by
the customer later than its committed date. Counts are listed in ascending priority order.

Q5 Local supplier
volume

Lists for each nation in a region the revenue that was received from orders in which both the customer and supplier were
within that nation.

Q6 Forecasting
revenue change

Quantifies the increase in revenue that would have resulted from eliminating certain discounts on items that are below a given
quantity in a given year.

Q7 Volume shipping Finds, for 2 given nations, the gross discounted revenues derived from parts that were shipped between the nations during
1995 and 1996.

Q8 National market
share

Determines how the market share of a given nation within a given region has changed from 1995 to 1996 for a given part.

Q9 Product type
profit measure

Determines how much profit is made on a given line of parts, broken out by supplier nation and year. Lists the nations in
alphabetical order and, for each nation, the year and profit in reverse chronological order.

Q10 Returned item
reporting

Finds the customers who have returned parts that were ordered in a given quarter. Lists 20 customers in descending order of
lost revenues.

Q11 Important stock
identification

Finds the most valuable subset of suppliers’ stock in a given nation. Displays the part number and the value in descending
order of value.

Q12 Shipping modes
and order priority

Counts, for 2 different shipping modes, the lineitems that were shipped before the commit date but were received by
customers after the commit date in a given year. Partitions the late lineitems into two groups depending on their priority.

Q13 Sales clerk
performance

Computes the loss of revenue on orders placed by a given clerk due to parts being returned by customers. Groups and orders
the results by the year in which the parts were ordered.

Q14 Promotion effect Determines the percentage of revenue in a given month that was derived from parts on promotion.

Q15 Top supplier Finds the supplier(s) who contributed the most to the overall revenue for parts shipped during a given quarter.

Q16 Parts/supplier
relationship

Counts the number of suppliers who have not had complaints registered at the Better Business Bureau and who can supply
parts that are not of a given type and brand in 8 different sizes. Results are listed in descending order of count and ascending
order of brand, type and size.

Q17 Small-quantity-
order revenue

Looks at parts of a given brand and container type to determine the average lineitem quantity. Calculates the average yearly
gross loss in revenue if orders for these parts with a quantity of less than 20% of this average were no longer taken.

UF2 Old sales update Removes rows representing 0.1% of the initial population from the ORDER and LINEITEM tables to emulate the removal of
stale or obsolete information.

Table 2: Summary of TPC-D’s Queries and Update Functions. In the TPC-D power test, UF1 is executed, followed by queries
1 to 17 in an order defined by the benchmark, and then by UF2.
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

Source Aerospace
company

Banking
corp.

Consumer
goods

company

Direct mail
marketing

firm

Direct mail
marketing

firm

Financial
services

firm

Insurance
company

Discount
store

Telecom.
Company A

Telecom.
company B

Telecom.
company B

Utility
company -

TPC
benchmark

C

TPC
benchmark

D

Platform MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

WinNT on
Intel X86

WinNT on
Intel X86

DBMS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/UDB DB2/UDB

Date Collected 2/3/1992 5/13/1991 9/8/1992 9/18/1991 9/19/1991 6/6/1991 10/7/1992 7/1/1992 4/15/1992 10/8/1990 10/9/1990 5/14/1991 - 2/10/1998 3/8/1998

Duration (h:m) 2:29 22:57 1:59 1:03 2:02 3:54 2:41 4:52 1:40 2:27 1:42 3:16 4:15 (withheld) (withheld)

# Objects 2203 1281 626 1446 1446 3124 1953 434 521 255 255 1139 1224 101 192

 Data Size (MB) 33558 53079 3423 18191 18191 10064 38095 72188 197422 15114 15114 39070 42792 70246 77824

Footprint (MB) 1397 9600 726 1137 1362 2127 1732 6769 2986 947 976 5727 2957 13267 51580

# References 7779007 35916414 7133845 6401880 14396125 15664004 20648874 38646360 13072916 11531195 13757374 37653369 18550114 196067649 218130354

# Xacts 98931 85173 66102 11892 14906 20956 70242 797637 84378 36508 25899 118191 119235 890885 230

Read Ratio (%) 93.8 90.6 86.9 95.4 95.6 90.9 84.8 86.9 85.9 93.0 98.1 89.3 90.9 87.4 97.8

Table 3: Summary of Trace Characteristics. The termobjectrefers to a logical unit of data, such as a database table or an index,
that is managed like a file.

tificial nature of TPC-C is apparent in the smoothness of its
footprint profile, the rate at which it references new pages is
within the spectrum defined by the other traces. The write
footprint profiles are presented in Figure 2. These profiles
show how the percentage of pages written increases with the
number of references. Compared to most of the production
traces, the TPC traces generate modified pages at a much
higher rate. We will examine the write behavior of the vari-
ous workloads in greater detail in [20].

An important issue in using trace-driven simulations to
study memory hierarchy design is that the traces must have
a sufficiently large footprint for the memory configurations
of interest. However, estimating the length of trace required
is difficult because the relationship between the trace length
and footprint is not well-understood. In this paper, we empir-
ically determine this relationship by looking at the average
footprint of our production traces. Because the traces are
of different lengths, if we simply average the footprints, the
number of traces being averaged will decrease with the trace
length so that the resulting curve will contain discontinuities.
Therefore, we take the average of the rate of increase of the
footprint and then integrate the resulting expression. More
formally, we define the average footprint afterX references

as
RX

0

d
dx
(fi(x)) dx, wherefi(x) denotes the footprint of

tracei afterx references. This is plotted as the lines labeled
“Prod. Ave.” in Figures 1 and 2. Note that we omit Bank
in plotting the average because its footprint profile is clearly
unlike any of the other production workloads.

We find that the relationship between trace length and
footprint can be accurately described by the Hill equa-
tion which was originally proposed for modeling the ab-
sorption of oxygen by hæmoglobin [19]. The Hill model,
Hill(fmax; k; n), represents a family of sigmoidal satura-
tion curves defined byf(x) = fmax�x

n

k+xn
wherefmax is the

asymptotic value off(x) andk andn are parameters that
determine the shape and slope of the curve. In our current
context, the value offmax represents the percentage of data
that is predicted to be in active use. For instance, from Fig-
ure 1, the model predicts that 23.2% of the data will be refer-
enced if the trace is infinitely long. From Figure 2, the model
predicts that only 9.84% of the data will be written to.

In the course of this research, there were situations where
the state of various simulators had to be established before
meaningful statistics could be collected. This is often re-
ferred to as warming up the simulator. For instance, the
buffer pool in a real system is seldom empty, except during
start up. Therefore, if we simulate the buffer pool miss ratio
starting with an empty buffer pool, the results will be skewed
by the extra misses that are needed to fill the buffer pool. A
more meaningful approach is to collect the statistics after
the buffer pool has been filled or warmed up. Such statistics
are known aswarm statistics. Unless otherwise stated, we
used half of the trace for such warm-up purposes for most of
the traces. Because the footprint of Bank increases abruptly
around the middle the trace, we prolonged the warm-up pe-
riod for Bank to slightly beyond the halfway mark. For the
TPC-D trace, we used only a quarter of the trace to warm up
our simulators because this already achieved a large enough
footprint. The various warm-start points are presented in Ta-
ble 4 and are also circled in Figures 1 and 2.

Since our traces were taken from two different kinds of
systems and with different tracing mechanisms, we need to
examine some of the underlying assumptions and compare
the features that are present in the traces to make sure that
we have a compatible set of data for our analysis. First, the
TPC traces contain references to the database log while the
production traces do not. Table 5 shows how significant log
activity is in the TPC traces. Since the 17 queries in TPC-D
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Figure 1: Reference Footprint of the Traces as a Function of Trace Length. The default warm-start points for the simulations
in [20] are circled.
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Figure 2: Write Footprint of the Traces as a Function of Trace Length. The default warm-start points for the simulations in [20]
are circled.

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility TPC-C TPC-D

# References 3889504 20000000 3566923 3200940 7198063 7832002 10324437 19323180 6536458 5765598 6878687 18826685 98033825 54532589

% References 50.0 55.7 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0

% Trace Time 42.6 65.8 49.1 45.0 40.1 51.4 50.4 50.5 64.6 45.3 50.3 50.3 51.9 42.0

Table 4: Warm-Start Point.
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA Utility Average TPC-C TPC-D

Blind Writes (%) 6.08 12.63 10.92 9.13 11.98 20.48 4.76 3.10 16.44 10.81 10.63 0.49 29.82

Table 6: Percent of Writes that are not Preceded by Reads of the Same Page.

Trace TPC-C TPC-D

Log Refs. (%) 11.63 1.31

Log Forces (%) 0.37 0.000072

Log Footprint (%) 0.000029 0.0000076

Overhead Refs. (%) 5.78 2.90

Table 5: Significance of Log Activity and References to
Overhead Pages.

are read-only, there is very little log activity in the TPC-D
trace. For the TPC-C trace, one out of every nine references
is a log reference. Though the number of log references is
significant, because of the use of group transaction commits
and the fact that the log is usually used in an append mode
where all the references are to the tail of the log, the number
of physical log I/O (log force) as well as the log footprint
are both insignificant when compared to the non-log activity.
Moreover, since the I/O activity corresponding to the log is
already well understood to consist primarily of sequential
writes, we decided to delete the log references from the TPC
traces so that they would contain data comparable to that
collected from the real workloads.

Second, when write access is requested for a page, the
buffer manager generally has to ensure that the page is
present in the buffer pool. In special cases where the entire
page is to be written, a “no-read” indication can be given to
the buffer manager to indicate that it is not necessary to fetch
the page from disk. We refer to such writes as blind writes.
The TelecomB traces were collected with an early version of
the DB2/390 tracing package that did not distinguish blind
writes. In other words, all the writes in the TelecomB traces
are preceded by reads of the same page. Table 6 shows how
significant blind writes are in the various other traces. Since
writes are a small fraction of the total references to begin
with, the lack of blind write information in the TelecomB
traces is not expected to have a significant impact on our
analysis.

Third, all our traces record logical references to the
database objects. In reality, these logical references have to
be mapped to some physical space. Depending on whether
the DBMS is set up to use raw partitions or the filesystem
for storage, either the DBMS or the filesystem has to main-
tain overhead pages to store the logical address to physical
address mapping and to keep track of the free space. The

TPC traces include references to these overhead pages. As
shown in Table 5, the overhead pages account for a small
percentage of the total number of references. Therefore, to
be consistent, we have also chosen to delete the references
to the overhead pages in the TPC traces.

Finally, some of the traces contain references to large
pages,i.e., those with sizes that are multiples of the 4KB
base page size. For consistency, we converted these to refer
to 4KB pages.

4 Workload Characteristics

4.1 Transaction Characteristics

Transactions are the building blocks of a database work-
load. The characteristics of transactions are therefore good
reflections of the nature of the workload. Table 7 summa-
rizes the transaction characteristics of our workloads. In this
table, we consider both the logical and physical read ratio.
The former is defined in terms of references to permanent
objects only while the latter accounts for references to both
temporary and permanent objects. The terminology stems
from the fact that references to temporary objects are not in-
trinsic to the transaction but are a function of physical con-
straints such as memory size. Table 7 also contains data on
thepage reuseof transactions. This is defined as the ratio of
the number of references to the number of pages referenced
and is an indication of the locality of reference exhibited by
the transactions.

The table shows that the production workloads are very
diverse in their transaction characteristics. In certain cases,
however, TPC-C and TPC-D still fall outside the broad range
of behavior exhibited by the production workloads. For in-
stance, the proportion of logically read-only transactions in
the production workloads varies from 19% in TelecomA to
90% in Utility with an average of about 60%. On the other
hand, only 8% of TPC-C’s transactions are logically read-
only. Since read-only transactions are easier to isolate from
one another, this suggests that TPC-C stresses the concur-
rency control mechanism more than the production work-
loads. Notice also that the TPC-D transactions have a lot
more references than those of the production workloads but
they involve fewer objects and have much better locality.

Figure 3 plots the distribution oftransaction size, which
is the number of references in a transaction. The transac-
tions in the TPC benchmarks, especially those in TPC-D,
tend to be larger than those of the production workloads. In
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

# 98931 85173 66102 11892 14906 20956 70242 797637 84378 36508 25899 118191 119235 890885 230

% Read-only1 76.4 43.4 27.6 74.3 78.2 71.2 81.2 32.3 19.3 60.8 59.7 89.8 59.5 7.96 37.4

Xa
ct

s

% Read-only2 74.3 41.1 21.1 60.0 60.1 59.4 54.3 32.1 11.7 56.1 54.3 38.2 46.9 7.96 32.6

Ave.
(%-tile)

95.6
(22.9)

86.0
(48.7)

90.3
(54.7)

96.2
(21.9)

97.0
(19.3)

94.7
(24.8)

96.9
(15.6)

93.1
(39.0)

88.3
(38.5)

95.3
(36.1)

95.1
(35.5)

98.8
(10.1)

93.9
(30.6)

86.5
(54.5)

89.1
(59.1)

Median 100 92.3 88.3 100 100 100 100 94.5 92.6 100 100 100 97.3 84.6 82.2

Std. Dev. 8.74 13.97 7.99 7.82 7.04 10.1 9.47 7.06 14.6 8.25 8.45 4.59 9.01 4.84 8.74

90%-tile 100 100 100 100 100 100 100 100 100 100 100 100 100 91.4 100R
ea

d 
R

at
io

 (%
)1

10%-tile 80 69.2 80 82.3 85.7 78.0 90.2 83.3 50 85.7 85.2 98.3 80.7 82.8 82.1

Ave.
(%-tile)

95.1
(24.9)

85.6
(50.0)

88.2
(57.6)

94.7
(29.3)

95.0
(27.6)

92.6
(32.1)

93.2
(38.2)

91.8
(45.9)

83.4
(39.5)

94.0
(34.4)

93.8
(34.6)

89.8
(45.7)

91.4
(38.3)

86.5
(54.5)

88.9
(59.6)

Median 100 85.5 87.5 100 100 100 100 93.3 86.4 100 100 91.4 95.4 84.6 82.2

Std. Dev. 9.33 13.8 8.56 8.73 8.50 11.5 10.8 7.51 14.1 9.38 9.46 10.4 10.2 4.84 8.61

90%-tile 100 100 100 100 100 100 100 100 100 100 100 100 100 91.4 100R
ea

d 
R

at
io

 (%
)2

10%-tile 80 69.2 77.3 80.8 80.6 73.7 82.2 80 50 80.8 80.8 75 75.9 82.8 82.1

Ave.
(%-tile)

78.6
(90.6)

422
(96.1)

108
(78.4)

538
(91.1)

966
(90.3)

747
(97.0)

294
(90.7)

48.5
(86.0)

155
(95.2)

316
(88.2)

531
(90.7)

319
(93.8)

376.9
(90.7)

220
(58.1)

948393
(92.2)

Median 4 29 39 24 29 25 32 19 51 49 51 28 31.7 153 63892

Std. Dev. 4306 15739 381 8889 15968 17602 11708 7951 5439 8948 28885 24724 12545 247 6273027

90%-tile 68 162 197 433 895 319 257 63 115 400 459 232 300 492 117929# 
Re

fe
re

nc
es

10%-tile 2 6 7 3 3 4 3 13 4 8 8 3 5.3 26 10

Ave.
(%-tile)

22.3
(84.6)

119
(96.3)

61.6
(77.2)

120
(89.7)

144
(88.5)

152
(89.8)

56.4
(78.9)

16.6
(64.7)

56.6
(90.7)

83.4
(82.5)

74.5
(80.0)

57.7
(80.6)

80.3
(83.6)

73.0
(57.9)

87509
(90.9)

Median 3 28 21 14 15 14 21 13 26 35 36 18 20.3 61 12501.5

Std. Dev. 439 2715 351 903 1123 1833 366 328 1350 547 743 1517 1018 81.3 484698

90%-tile 33 90 90 124 242 159 114 29 53 115 117 76 104 161 24776# 
Pa

ge
s 

R
ef

ed

10%-tile 2 3 6 3 3 3 3 5 2 7 7 3 3.9 12 4

Ave.
(%-tile)

1.81
(81.5)

12.4
(87.6)

5.93
(63.4)

3.77
(79.7)

6.98
(90.0)

16.0
(94.0)

6.37
(82.8)

2.11
(65.5)

9.88
(84.8)

5.45
(72.5)

4.79
(64.8)

5.66
(82.1)

6.76
(79.1)

16.5
(51.0)

14068
(92.6)

Median 0 3 2 0 0 0 0 1 4 0 0 3 1.1 4 6003

Std. Dev. 16.2 454 8.77 63.0 178 290 178 141 938 86.5 18.7 306 223 14.7 59347

90%-tile 3 16 13 6 7 10 13 4 13 8 8 8 9.1 36 6298# 
Pa

ge
s 

W
rit

te
n

10%-tile 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

Ave.
(%-tile)

4.76
(69.9)

11.8
(56.4)

15.6
(65.9)

8.19
(65.1)

8.70
(62.4)

8.40
(66.6)

13.0
(62.9)

7.14
(60.8)

11.4
(46.8)

11.8
(51.7)

12.0
(56.5)

12.9
(61.9)

10.5
(60.6)

10.0
(55.0)

4.6
(80.4)

Median 2 8 8 6 7 6 7 6 12 11 11 7 7.6 7 4

Std. Dev. 5.43 10.9 14.0 7.29 7.88 8.21 16.2 4.55 7.73 8.42 8.60 12.9 9.34 3.65 3.43

90%-tile 13 35 37 17 18 18 31 14 21 22 26 29 23.4 14 6# 
O

bj
s.

 R
ef

ed

10%-tile 1 2 2 2 2 2 1 2 2 4 4 2 2.2 7 2.1

Ave.
(%-tile)

1.55
(74.4)

2.12
(80.2)

1.85
(60.8)

2.62
(74.9)

3.18
(77.5)

2.38
(73.2)

1.88
(70.0)

1.73
(60.3)

2.97
(92.3)

3.01
(87.2)

3.26
(87.3)

2.04
(65.8)

2.38
(75.3)

2.75
(63.3)

5.79
(86.1)

Median 1 1.47 1.71 1.45 1.53 1.55 1.36 1.58 2 1.34 1.4 1.79 1.52 2.5 5.11

Std. Dev. 2.43 5.75 1.08 5.04 9.56 11.6 2.68 1.09 211 5.57 6.09 1.76 22.0 1.17 5.14

90%-tile 2.05 3.33 2.33 4.6 5.55 3.21 3.34 2.47 2.67 3.81 4.12 3 3.37 3.43 9.17Pa
ge

 R
eu

se

10%-tile 1 1 1 1 1 1 1 1 1.25 1 1 1 1.02 1.94 2.75

                                                          
1 Logical read ratio. Only references to permanent objects are considered.
2 Physical read ratio. References to both temporary and permanent objects are considered.

Table 7: Transaction Characteristics. We use %-tile to denote the percentile at which the average value occurs.
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(a) Distribution of Transaction Size. The circled point
shows that 22% of TPC-D’s transactions contain not
more than 10 references.
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(b) Distribution of Transaction Size Weighted by Trans-
action Size. The distribution is weighted in the sense
that a transaction of sizes is counteds times. The
circled point indicates that 21% of TPC-D’s refer-
ences are caused by transactions that contain fewer
than 6,300,000 references.

Figure 3: Number of References Per Transaction.

Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

E[S] 78.6 422 108 538 966 747 294 48.5 155 316 531 319 377 220 9.48x105

E[S2] 1.85x107 2.48x108 1.57x105 7.93x107 2.56x108 3.10x108 1.37x108 6.32x107 2.96x107 8.02x107 8.35x108 6.11x108 2.22x108 1.09x105 4.03x1013

E[S3] 1.65x1013 5.23x1014 5.46x109 3.85x1013 1.79x1014 3.98x1014 1.97x1014 3.93x1014 2.12x1013 8.04x1013 2.69x1015 2.48x1015 5.85x1014 7.51x107 3.04x1021

Table 8: First, Second and Third Moments of the Number of References in a Transaction(S).

addition, TPC-D’s transactions have a wide range in sizes.
When two-phase locking is used to ensure that transactions
are serializable [13], locks tend to be released only when
transactions end so that long transactions typically imply
long lock waits. Therefore the transaction size, which can
be considered the virtual transaction length or duration, is
a very important factor in analyzing concurrency control
mechanisms. To make our data more useful for mathemat-
ical modeling, we fitted it with standard probability distri-
butions. As shown in Figure 3, the lognormal distribution
(denoted LogNorm(�,�) where� is the mean and� is the
standard deviation) turns out to be a very good fit.

Since short transactions can be blocked for long periods
by long transactions holding the necessary locks, system per-
formance is sensitive to the second and third moments of the
transaction size [49]. In addition, the distribution of trans-
action size affects not only the absolute but also the relative
performance of different concurrency control schemes [43].
Therefore, we also present the average and higher moments

of the transaction size for our various workloads in Table 8.
In Figure 4, we plot the distribution oftransaction foot-

print or the number of pages referenced by a transaction.
The lognormal distribution is again a very good fit. Fig-
ures 3 and 4 show that most of the transactions are small
but large transactions account for most of the references and
most of the pages referenced. In contrast to TPC-C, the pro-
duction workloads are made up of transactions with a wide
range of sizes and footprints. That there is such a mixture of
large and small transactions complicates the task of schedul-
ing and allocating resources to satisfy the different perfor-
mance requirements of the transactions. For instance, a suit-
able balance has to be found between allowing large trans-
actions to make good forward progress and preventing them
from monopolizing the buffer pool. Regrettably, this issue is
beyond the scope of the current study, which only considers
the characteristics of workloads as they have been scheduled
and tuned in production environments.
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(a) Distribution of Transaction Footprint. The circled
point indicates that 36% of TPC-D’s transactions
reference fewer than 7 pages.
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(b) Distribution of Transaction Footprint Weighted by
Transaction Footprint. The distribution is weighted
in the sense that a transaction with footprintf is
countedf times. The circled point shows that 22%
of the pages referenced by TPC-D are due to trans-
actions that reference fewer than 630,000 pages.

Figure 4: Number of Pages Referenced Per Transaction.

4.2 Degree of Concurrency

In order to effectively utilize system resources, database
systems allow the concurrent execution of multiple trans-
actions through concurrency control mechanisms, such as
locking, that provide each transaction with an isolated view
of the system. The degree of concurrency,i.e., the number
of concurrently active transactions, in a workload directly af-
fects issues such as lock contention and deadlocks. Further-
more, for each active transaction in the system, the DBMS
has to maintain a database agent and its associated context,
which is non-trivial and includes various control blocks and
private memory. The time-averaged number of transactions
that are active in the various workloads at any one time is
summarized in the last row of Table 9. The production work-
loads again exhibit very diverse characteristics with the time-
averaged degree of concurrency ranging from slightly below
5 in ConsGds to nearly 80 in Aerospace.

Dynamically creating a database agent can be a signif-
icant part of the cost in short and medium size transac-
tions. In situations where the degree of concurrency is rather
constant, the agents and private resources can be held and
reused. Figure 5 shows how the degree of concurrency in
the various workloads vary over time. The very static pro-
files for both TPC-C and TPC-D stand in stark contrast to
those of the production workloads and imply that the TPC
benchmarks will not exercise the agent creation process of

the DBMS. For a more quantitative characterization of the
extent to which the degree of concurrency fluctuates over
time, we time-averaged the degree of concurrency over inter-
vals ranging from 100 milliseconds to the trace length. The
maximum values observed for each of these interval sizes are
presented in Table 9. We also plot the distribution of the de-
gree of concurrency time-averaged over one-second periods
in Figure 6. As shown in the figure, the lognormal distribu-
tion is a reasonably good fit for the average of the production
workloads.

4.3 Object Characteristics

For performance reasons, most DBMSs offer an option
to bypass the filesystem provided by the operating system
to directly access the raw storage devices. In this case, the
DBMS provides its own basic filesystem functionality such
as allocating storage and tracking free space. In this section,
we look at the characteristics of the objects in the various
workloads to better understand what is required of the un-
derlying filesystem, whether it is provided by the operating
system or the DBMS.

The total number of objects and the fraction of them that
are referenced or modified are presented in Table 10. The
total object count was obtained from the catalog dumps that
were taken when the systems were traced. Notice that the
production workloads have significantly more objects than
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

Inst. 132 27.0 16.0 25.0 24.0 48.0 27.0 138 17.0 20.0 16.0 40.0 44.2 60.0 8.00

100-ms 131 27.0 15.0 25.0 23.0 48.0 26.0 137 17.0 19.6 16.0 38.9 43.6 60.0 8.00

1-s 128 27.0 12.8 24.3 22.6 48.0 26.0 134 15.4 19.1 16.0 36.0 42.4 60.0 8.00

10-s 125 26.8 11.0 20.9 20.4 47.5 24.3 130 13.8 18.2 14.2 27.7 40.0 60.0 8.00

1-min 124 25.7 8.8 19.7 18.1 33.9 20.7 122 11.6 15.5 12.3 15.9 35.7 60.0 8.00

10-min 119 21.2 7.3 14.0 13.4 29.6 17.2 79.1 8.9 9.4 8.0 13.2 28.4 60.0 8.00

100-min 108 11.0 5.0 12.2 11.9 25.9 13.2 53.5 5.7 6.4 6.4 12.3 22.7 60.0 5.59

Trace Len. 77.7 5.39 4.91 12.1 11.6 20.5 12.8 42.7 6.50 5.06 6.32 11.3 18.1 60.0 3.07

Table 9: Degree of Concurrency Averaged over Various Time Intervals. The table shows the peak or maximum value observed
for each interval size. The instantaneous maximum is denoted by “Inst.”. The row labeled “Trace Len.” is essentially the
degree of concurrency time-averaged over the entire trace.
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Figure 5: Profile of Degree of Concurrency Over Time. The data in this figure have been smoothed by averaging over one-
minute intervals.
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

Total # 2203 1281 626 1446 1446 3124 1953 434 521 255 255 1139 1224 101 192

% Refed 42.9 79.5 39.6 32.3 36.3 35.2 39.7 43.8 48.6 60 62.0 54.3 47.9 15.8 37.5

O
bj

ec
ts

% Modified 22.0 37.9 20.6 15.3 16.0 14.5 21.3 24.4 26.9 36.1 38.4 36.3 25.8 11.9 22.9

Total # 8590909 13588236 876401 4656812 4656812 2576270 9752447 18480252 50539937 3869199 3869199 10002028 10954875 17982935 19922913

% Refed 4.16 18.1 21.2 6.25 7.49 21.1 4.55 9.38 1.51 6.27 6.46 14.7 10.1 18.9 66.3

Pa
ge

s

% Modified 0.45 2.32 7.78 0.34 0.57 2.83 1.50 2.33 0.882 0.864 0.310 2.38 1.88 14.6 9.93

Table 10: Reference Activity on Object and Page Bases.
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Figure 6: Distribution of Degree of Concurrency Time-
Averaged over One-Second Intervals. The distribution for
one-minute intervals is virtually identical.

the two benchmarks. This is not surprising because the
benchmarks are supposed to be distillations of real environ-
ments and should therefore contain only the core portions
of the real workloads. Furthermore, the benchmark traces
were collected on DB2/UDB which considers the various
indices of a table as a single object instead of individual ob-
jects. Figure 7 presents the distribution of object size. Ob-
serve that the object size, like the transaction size, tends to
approximately follow a lognormal distribution. In addition,
most of the objects are small but the very large objects ac-
count for most of the bytes. This is similar to what has been
observed in a general UNIX filesystem although the scale
there is much smaller [32]. Interestingly, the distribution of
file sizes in PCs running Windows in an office enivironment
has also been recently reported to follow a lognormal distri-
bution but the files are again much smaller than the objects
in the database workloads [10].

Notice from Table 10 that, for most of the workloads,
less than half of the objects are referenced for the duration
of the trace. In general, a common approach to improving
computer system performance is to place the items that are

likely to be used in faster storage. At the system level or in
other words, external to the DBMS, we can statically allo-
cate to faster storage (e.g.,solid-state disks) the hottest ob-
jects, i.e., those with the highest density (rate per byte) of
reference. This approach reflects what has been referred to
as the “�i;j” model [45] in which a transaction streami ref-
erences objectj as a Poisson process with rate�i;j . Under
such a model, an optimal static allocation should give non-
lookahead optimal results, as with theAo algorithm for the
independent reference model for program behavior [1]. We
consider the performance potential of such an approach in
Figure 8.

Figure 8(a) shows that a small number of objects account
for most of the references. This skew in the access pattern
is common in computer systems and has been expressed as
the “90/10” or “80/20” locality rule. For instance, in 1971,
Knuth observed that thenth most important statement in a
set of FORTRAN programs accounts for(��1)��n of run-
ning time, where� is a parameter [30]. We refer to this
model of reference skew as the Knuth(�) model. As shown
in Figure 8(a), we fitted the data for our production work-
loads with this function. Since the fit is not very good,
we also experimented with more complicated functions. It
turned out that the Hill equation [19] discussed in Section 3.3
is a much better fit.

Since the objects are of different sizes, we need to ac-
count for their sizes to fully understand the potential benefit
of allocating hot objects to faster storage. This is done in
Figure 8(b). Notice that the production workloads on aver-
age have a much higher reference skew than the two TPC
benchmarks. This suggests that the production workloads
will generally be more amenable to strategies that attempt
to statically optimize data placement on an object basis. In
[20], we further consider the static management of faster
storage on a page basis and the results indicate that dynamic
management offers a dramatically better hit ratio. This is
in line with conclusions in [45] and indicates that reference
probabilities are clearly time varying and the�i;j model, like
the independent reference model for programs, is not valid.

Handling write operations, especially those that involve a
small number of pages, is the Achilles heel of certain classes
of storage systems such as those based on RAID-5 [8]. In
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Figure 7: Size of the Objects in the Various Workloads.
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Figure 9: Write Skew on an Object Basis.

such systems, data are stripped across multiple disks and
are protected from individual disk failures by parity blocks
that are scattered among the disks. Each parity block pro-
tects a stripe of data and has to be updated whenever any
page within the stripe is written. For write operations that
do not involve all the pages in a stripe, generating the new
parity will involve reading the old parity and either the old
data or the data that is not being updated. For such small
write operations, mirroring, also known as RAID-1, offers
better performance because no reads are required. However,
RAID-1 tends to be more expensive than RAID-5 in that it
uses more disks. This suggests that it may make sense to
locate the frequently modified objects in RAID-1 and the
more static objects in RAID-5. We consider the effective-
ness of such an approach by plotting the write skew in Fig-
ure 9. As is the case for the reference skew, we find that
the write skew can be accurately described by the Hill equa-
tion. From Figure 9(b), the write skew taking into account
the size of the objects is generally less pronounced than the
reference skew but is still very significant for the production
workloads. Again, the two TPC benchmarks show a lot less
skew at the object level than do the production workloads.

In Table 11, we break down the objects into data ob-
jects, index objects and temporary or work file objects. Ob-
serve that although the data pages account for the majority
of pages in most of the workloads, index objects account for
the largest chunk of references. This suggests that studies

that do not consider index references, such as [31], may not
give the complete picture. Notice further that most of the ob-
jects in the production workloads are index objects but this
is not the case in the TPC benchmarks. Part of the reason
is that, as mentioned above, the various indices of a table
are considered a single object in DB2/UDB. Another obser-
vation from Table 11 is that the temporary objects may ac-
count for up to 80% of the write traffic and must therefore
be considered when characterizing the write behavior of the
workloads. Furthermore, except for TPC-C, which has no
activity to temporary objects, the temporary objects account
for a very significant portion of the modified pages.

Note that TPC-D tends to stand out among the work-
loads. In particular, the ratio of index references to data ref-
erences in TPC-D is a high 17. Part of the reason is that in
TPC-D’s Update Function 1 (UF1), we append the records
to be inserted so that it is possible to insert one whole page
of records with only one data reference. Perhaps the bigger
reason is that so much effort has gone into optimizing TPC-
D that we can create indices that contain all the data needed
by the queries. This allows “index-only” access where there
is no need to probe the base table after an index lookup. In
some sense, data is replicated in the indices, which partly
explains why our TPC-D setup contains more index pages
than data pages. Notice also that less than 1% of the mod-
ified pages in TPC-D are data pages and that less than 10%
of the writes update data pages. Instead, most of TPC-D’s
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

Total # 2203 1281 626 1446 1446 3124 1953 434 521 255 255 1139 1224 101 192

% Data 44.5 42.2 39.6 35.1 35.1 48.2 48.9 46.1 45.1 43.9 43.9 40.2 42.7 50.5 60.4

% Index 55.2 57.3 52.2 64.7 64.7 51.6 50.6 52.8 54.1 54.1 54.1 59.4 55.9 49.5 26.0O
bj

ec
ts

% Temp 0.2 0.5 8.1 0.2 0.2 0.2 0.5 1.2 0.8 2.0 2.0 0.4 1.4 0 12.5

Total # 945 1019 248 467 525 1101 775 190 253 153 158 619 538 16 72

% Data 40.3 51.8 41.5 39.2 38.1 42.6 43.6 48.9 43.5 37.9 36.7 42.6 42.2 50 44.4

% Index 59.3 47.5 56.9 60.4 61.5 55.9 55.2 48.9 54.9 59.5 60.8 56.7 56.5 50 19.4

R
ef

ed
 O

bj
s

% Temp 0.4 0.7 1.6 0.4 0.4 0.5 1.2 2.1 1.6 2.6 2.5 0.6 1.2 0 33.3

Total # 484 485 129 221 231 453 416 106 140 92 98 413 272 12 44

% Data 38.8 38.4 42.6 43.0 43.3 48.8 42.3 50 46.4 32.6 32.7 45.3 42.0 66.7 40.9

% Index 60.3 60.2 54.3 56.1 55.8 50.1 55.5 46.2 50.7 63.0 63.3 53.8 55.8 33.3 4.5

M
od

ifi
ed

 O
bj

s

% Temp 0.8 1.4 3.1 0.9 0.9 1.1 2.2 3.8 2.9 4.3 4.1 1.0 2.2 0 54.5

Total # 8590909 13588236 876401 4656812 4656812 2576270 9752447 18480252 50539937 3869220 3869220 10002028 10954879 17982935 19922913

% Data 75.9 57.8 80.8 66.6 66.6 87.3 72.2 82.2 68.5 69.2 69.2 78.4 72.9 84.1 45.2

% Index 24.0 41.0 19.2 33.2 33.2 11.2 27.8 17.7 31.5 30.2 30.2 21.6 26.7 15.9 50.8Pa
ge

s

% Temp 0 1.2 0 0.2 0.2 1.5 0.1 0 0 0.6 0.6 0 0.4 0 4.1

Total # 357605 2457640 185803 291094 348582 544496 443480 1732833 764358 242472 249878 1466054 757025 3396262 13204481

% Data 75.0 86.2 73.8 69.8 78.8 84.0 68.7 62.8 70.0 60.5 65.5 73.8 72.4 74.0 50.8

% Index 24.6 6.9 26.1 28.7 18.0 8.8 29.8 36.9 29.5 30.0 33.3 26.1 24.9 26.0 43.1

R
ef

ed
 P

ag
es

% Temp 0.4 6.8 0.1 1.5 3.2 7.3 1.6 0.3 0.5 9.4 1.1 0.2 2.7 0 6.1

Total # 38964 315518 68192 15834 26654 72912 146213 431483 445787 33423 12006 237996 153749 2627637 1979231

% Data 39.5 22.2 63.8 32.9 29.1 32.5 69.8 66.9 77.4 10.9 26.7 63.2 44.6 83.5 0.8

% Index 56.8 24.6 35.9 38.8 28.7 13.3 25.5 31.8 21.7 20.7 49.7 35.8 31.9 16.5 58.4

M
od

ifi
ed

 P
gs

% Temp 3.7 53.1 0.4 28.3 42.2 54.2 4.7 1.2 0.9 68.4 23.6 1.0 23.5 0 40.9

Total # 7779007 35916414 7133845 6401880 14396125 15664004 20648874 38646360 13072916 11531195 13757374 37653369 18550114 1.96E+08 2.18E+08

% Data 38.9 37.1 21.4 38.8 33.7 36.5 43.5 30.2 34.4 30.2 16.2 31.1 32.7 28.9 5.4

% Index 57.4 48.6 66.6 56.6 61.4 37.6 48.8 65.1 54.9 39.0 68.3 53.7 54.8 71.1 92.7

R
ef

er
en

ce
s

% Temp 3.7 14.3 12.0 4.6 4.9 25.9 7.7 4.7 10.7 30.8 15.6 15.2 12.5 0 1.8

Total # 484786 3374269 935996 297787 630881 1428314 3135002 5080919 1842585 811884 262996 4021942 1858947 24723791 4737739

% Data 31.2 19.2 30.8 23.1 24.3 17.4 46.7 58.4 45.9 8.5 17.5 23.6 28.9 61.7 9.7

% Index 42.8 28.3 24.2 31.1 24.2 6.8 36.7 25.3 20.1 11.0 21.1 10.8 23.5 38.3 48.8W
rit

es

% Temp 26.0 52.5 44.9 45.8 51.5 75.8 16.5 16.3 34.0 80.5 61.5 65.6 47.6 0 41.5

Table 11: Relative Significance of Data, Index and Temporary Objects.
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updates are directed at index and temporary objects. Such
behavior is a reflection of the fact that TPC-D is a query pro-
cessing workload that is predominantly read-only and that
has been well-tuned to use indices effectively. It implies that
optimizations for handling index and temporary objects are
disproportionately important for TPC-D.

4.4 I/O Intensity and Burstiness

A major consideration in designing a computer system is
that it should be able to sustain I/O activity that is commen-
surate with its processing power. When designing the IBM
System/360, Amdahl observed that the amount of I/O gener-
ated per instruction tends to be relatively constant [3]. More
specifically, Amdahls’ rule of thumb states that a typical data
processing system generates approximately 1Mb/s of I/O
bandwidth for every MIPS of processing power [18]. This
rule of thumb dates back to the sixties and major changes
in both hardware and software have since occurred. There-
fore, in this section, we revalidate it by empirically estimat-
ing the ratio of I/O activity to processing power required for
our workloads.

We use the termbPI (bits Per Instruction) to denote the
number of bits of I/O generated per instruction. We empha-
size the logical bPI which is defined in terms of the logi-
cal I/O generated per instruction. This is an intrinsic char-
acteristic of the workload that is relatively independent of
system configuration such as memory size. Note, however,
that dramatic differences in memory size can result in algo-
rithmic changes that affect the logical bPI. For instance, the
amount of memory available for sorting determines whether
external sorting techniques are required and if so, the num-
ber of merge phases needed [29]. Similarly, as more mem-
ory is available, fewer passes are needed to perform hash
joins [42] and this translates into less I/O and therefore lower
bPI. Conversely, with larger and cheaper memories, previ-
ously advantageous tradeoffs of additional computation for
less memory use no longer apply.

The physical bPI for a given system configuration can
be obtained from the logical bPI by multiplication with the
buffer pool miss ratio. However, the physical bPI so obtained
reflects only the physical I/O generated by the database. For
instance, it does not account for system generated I/O which
may constitute a significant portion of the total I/O in certain
environments. For example, in [45], it was found that over
80% of the I/O was I/O that was not ”visible” to the user,i.e.,
it was not I/O by a user process to a user defined file. Our
trace data reflects only database system I/O and not what-
ever I/O may have been generated by the operating system
or other applications.

Unfortunately, we do not have information regarding the
system configurations for our production workloads. We do
know, however, that the installations from which our traces
were taken tend to have some of the highest-end systems

available at the time. So we assume that these systems had
about 100 MIPS of processing power, which is roughly half
the processing power of the most powerful mainframe sys-
tems that IBM began shipping in late 1992. For the TPC
benchmarks, the processing power of the systems is deter-
mined by the following formula:

MIPS =
# processors� processor clock speed

estimated CPI

We estimate that the CPI (Cycles Per Instruction) is about
3 for TPC-C and 1.5 for TPC-D, in view of the results pre-
sented in [2, 28].

The average amount of logical I/O generated per instruc-
tion for the various workloads is summarized in the last row
of Table 12. The corresponding numbers for the write I/O
activity are shown in Table 13. On average, the production
workloads have a logical bPI of about 0.6, approximately
one tenth of which is due to writes. TPC-C’s bPI is about
3 times higher while TPC-D’s bPI is about twice as high.
Note, however, that mainframe and x86 MIPS are not equiv-
alent and cannot be directly compared. Our primary interest
in this exercise is merely to determine an order-of-magnitude
estimate for bPI. We find the figure of 0.6 to be surprisingly
high - almost as high as the earlier noted figure of 1.0, based
on systems of the 1960s, despite all of the changes suggest-
ing much lower I/O rates.

Results presented in [20] show that a buffer pool that is
1% of the total data size can achieve an average hit ratio of
about 90% for the production workloads. With such a hit ra-
tio, the average physical bPI value for the production work-
loads appears to be around 0.06, which is much lower than
Amdahl’s rule of thumb. In the 1960s, of course, physical
and logical I/O were the same thing. The corresponding hit
ratio for the TPC benchmarks is around 95%, meaning that
the physical bPI for TPC-C and TPC-D is comparable to the
average of the production workloads (0.08 for TPC-C and
0.05 for TPC-D).

The burstiness of the I/O traffic is a very important char-
acteristic of a workload and has implications on the tech-
niques that can be applied to improve I/O performance.
For instance, a bursty traffic pattern suggests that buffering
mechanisms that smooth out the traffic will be useful. More
generally, it indicates that there are opportunities to use the
relatively idle periods to do some useful work. One common
approach is to defer or offload some work from the busy pe-
riods to the relative lulls. Write buffering with subsequent
destage and parity-logging disk arrays [47] can be viewed
as examples of such an approach. Another frequently used
approach is to eagerly or speculatively perform some work
in the hope that such work will help improve performance
during the next busy period. Examples of such techniques
include prefetching, reorganizing data based on access pat-
terns, and garbage collection. A bursty traffic pattern may
also be more amenable to techniques that adjust and adapt to
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

100-ms 2.51 3.46 2.23 3.20 3.73 3.28 5.37 3.72 5.27 3.74 3.97 3.66 3.68 6.09 7.54

1-s 1.76 2.85 1.16 2.09 2.45 2.65 3.19 2.60 3.23 1.89 2.16 2.87 2.41 2.66 6.95

10-s 1.40 1.92 0.632 1.69 1.67 1.65 2.12 1.91 2.81 1.09 1.59 2.40 1.74 2.02 5.66

1-min 0.976 0.878 0.464 1.21 1.42 1.14 1.69 1.29 2.14 0.854 1.32 2.18 1.30 1.76 5.59

10-min 0.575 0.586 0.365 0.848 0.945 0.528 1.25 1.05 1.14 0.683 0.989 1.44 0.867 1.70 3.94

100-min 0.333 0.412 0.335 0.566 0.751 0.437 0.837 0.799 0.540 0.478 0.747 1.08 0.609 1.69 2.22

Trace Len. 0.285 0.142 0.328 0.559 0.643 0.365 0.700 0.724 0.715 0.430 0.739 1.047 0.556 1.62 0.991

Table 12: Number of Logical I/O Bits Per Instruction Averaged over Various Time Intervals. The table shows the peak or
maximum value observed for each interval size. The row labeled “Trace Len.” is essentially the average logical bPI over the
entire trace.

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

100-ms 1.14 1.06 0.492 0.963 0.796 2.01 1.25 0.816 1.41 0.800 0.731 2.22 1.14 0.677 1.16

1-s 0.559 0.664 0.193 0.583 0.494 1.15 0.820 0.623 1.05 0.684 0.634 1.83 0.774 0.355 0.767

10-s 0.311 0.383 0.109 0.305 0.307 0.394 0.592 0.270 0.499 0.146 0.143 1.38 0.403 0.261 0.208

1-min 0.0821 0.332 0.0785 0.128 0.157 0.277 0.409 0.196 0.305 0.110 0.0562 0.726 0.238 0.225 0.173

10-min 0.0289 0.189 0.0525 0.0386 0.0468 0.0648 0.299 0.154 0.192 0.0743 0.0248 0.233 0.117 0.214 0.0578

100-min 0.0212 0.051 0.0421 0.0261 0.0358 0.0554 0.154 0.0985 0.0548 0.0444 0.0146 0.137 0.0612 0.213 0.0301

Trace Len. 0.0178 0.0134 0.0430 0.0260 0.0282 0.0333 0.106 0.0951 0.101 0.0303 0.0141 0.112 0.0517 0.205 0.0215

Table 13: Number of Logical I/O Bits Written Per Instruction Averaged over Various Time Intervals. The table shows the peak
or maximum value observed for each interval size. The row labeled “Trace Len.” is essentially the average number of logical
I/O bits written per instruction over the entire trace.

the traffic. For instance, if the write traffic is bursty, setting
aside a fixed portion of the buffer pool as the write cache will
probably not perform as well as letting the write cache grow
and dynamically deciding when and what pages to destage.

In this paper, we briefly consider how the workloads vary
in the burstiness of their I/O traffic. Readers who are inter-
ested in the detection of idle periods and the prediction of
their lengths are referred to [15]. Figure 10 shows the pro-
file of logical bPI over time. Observe that the I/O traffic
of the production workloads tends to be rather bursty in na-
ture. Because of time-of-day effects, the fluctuation in bPI
is especially pronounced for Bank, which was observed for
23 hours. The I/O traffic for TPC-D is also very bursty. In
contrast, TPC-C’s I/O traffic stands out as being very regu-
lar, suggesting that TPC-C, unlike the production workloads,
will not discriminate against systems that do not exploit the
idle periods.

For a more quantitative characterization of the burstiness,
we time-averaged the logical bPI for the various workloads
over intervals ranging from 100 milliseconds to the trace
length. The maximum values observed for each of these in-
tervals are presented in Tables 12 and 13. The fact that the
bPI drops significantly when averaged over longer time pe-
riods indicates that the I/O traffic of the workloads tends to
be very bursty in nature. When designing systems, we have
to take this burstiness into consideration and design not just

for the average case. Notice further that the writes account
for a larger fraction of the bPI for smaller interval sizes. This
suggests that the write activity is more bursty than the read
activity.

Figure 11 plots the distribution of the number of logi-
cal I/O bits per instruction averaged over one-second and
one-minute periods. As shown in the figure, the data can be
modeled reasonably well by the beta distribution (denoted
Beta(�1,�2) where�1 and�2 are the standard parameters)
and the exponential distribution (denoted Exp(�) where�
is the mean). For instance, the distribution of bPI averaged
over one-second periods tends to follow the beta distribu-
tion with parameters 1.69 and 38.7 that is scaled by 10.3
and translated by 0.000259. This is denoted as Beta(1.69,
38.7)�10.3+0.000259 in Figure 11.

5 Conclusions

In this paper, we empirically examine the workload char-
acteristics of the peak production database workloads of ten
of the world’s largest corporations as well as those of the
industry-standard benchmarks for on-line transaction pro-
cessing and decision support systems, namely TPC-C and
TPC-D respectively. Even though the production workloads
were run on similar systems at around the same point in time,
they turned out to be very diverse. Nevertheless, in certain
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Figure 10: Profile of Number of Logical I/O Bits Per Instruction over Time. The data in this figure have been smoothed by
averaging over one-minute intervals.
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Figure 11: Distribution of Number of Logical I/O Bits Per Instruction Averaged over One-Second and One-Minute Time
Intervals.

cases, TPC-C and TPC-D still fall outside the broad spec-
trum of behavior exhibited by the production workloads. In
general, the two TPC benchmarks tend to complement one
another in the sense that they are representative of differ-
ent aspects of the production workloads. However, there are
still some characteristics of the real workloads that are not
reflected by either of the benchmarks.

We find that the production workloads are dynamic in
that their characteristics are time-varying. For instance, their
I/O demands are very bursty, suggesting that adaptive tech-
niques for smoothening the load and for intelligently ex-
ploiting idle periods will be useful in a production setting.
In stark contrast, TPC-C is very static and predictable, im-
plying that TPC-C primarily evaluates peak performance,
which though definitely important, does not translate exactly
into effective performance in a production environment with
bursty workload characteristics. TPC-D is better in this re-
gard but it shares with TPC-C the characteristic of having a
rather stable degree of concurrency. This means that these
benchmarks will tend not to measure the overheads for set-
ting up and destroying database agents, which can be signif-
icant in a production environment.

Another aspect of the regularity of TPC-C is manifested
in the size of its transactions. Unlike the production work-
loads which contain transactions with a wide variety of sizes,
TPC-C’s transactions are very uniform in size. In other
words, TPC-C will not test techniques for scheduling and
allocating resources among transactions with different re-
source and performance requirements even though these are
common in the production environments. TPC-D appears

to be similar to the production workloads in that it contains
transactions with a wide variety of sizes. However, the very
long transactions in TPC-D are due to the read-only queries
that are run serially in the power test. Therefore, it too does
not evaluate scheduling and resource allocation among di-
verse transactions.

When two-phase locking is used to ensure that transac-
tions are serializable [13], locks tend to be released only
when transactions end. Therefore the distribution of transac-
tion size is a very important factor in determining lock con-
tention. As we have seen, TPC-C’s transactions are rather
uniform in size. Furthermore, when compared to the produc-
tion workloads. TPC-C tends to have longer transactions and
relatively few read-only transactions. All these suggest that
TPC-C stresses the concurrency control mechanism differ-
ently than the production workloads analyzed in this paper.
Some of TPC-D’s transactions are much longer than those
of the production workloads but since they are read-only,
they can be run at a lower isolation level,i.e., under more
relaxed consistency requirements [16]. Furthermore, in the
TPC-D power test, the long transactions are run serially. In
other words, TPC-D tends not to load the concurrency con-
trol mechanism.

While temporary objects account for a significant portion
of the write traffic in the production workloads, TPC-C does
not have any activity to temporary objects. TPC-D is more
in line with the production workloads in this regard but it
stands out in that practically all of its references are directed
at the index objects. All these mean that TPC-C does not
assess the handling of temporary objects whilst TPC-D dis-
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proportionately rewards index optimizations. Our analysis
also suggests that on an object basis, the production work-
loads exhibit significantly higher reference and write skew
than do the two benchmarks. In other words, statically allo-
cating hotter objects to faster storage will be more beneficial
to the production workloads than to the TPC benchmarks.

As part of our analysis, we also reexamine Amdahl’s rule
of thumb from the sixties, which states that a typical data
processing system generates about 1Mb/s of I/O bandwidth
for every MIPS of processing power. We discover that both
the TPC benchmarks and the production workloads generate
logical I/O rates within a factor of two of the earlier figure,
despite the passage of 20-30 years. Physical I/O rates, of
course, are about 90% lower due to the use of buffering and
caching techniques not used in the earlier period.
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