
V
E

R
I

T
A

S

W
H

I
T

E

P
A

P
E

R

The Oracle Disk Manager
API: A Study of the VERITAS
Implementation

mailto: kevin.closson@veritas.com

Table of Contents
Overview .1

Background: I/O Complexity .2

Oracle Disk Manager Features .3

Advanced Support for File System I/O .3

File Management Features .3

Atomic File Creation .4

Oracle Managed File Support .4

File Identification .5

Oracle Disk Manager Performance .6

Performance Testing Background .6

Performance Observations .7

Oracle Parallel Server .13

Summary .14

Overview

One of the design goals behind Oracle9i is reducing complexity. Oracle Disk Manager (ODM) is an essential part of Oracle’s
strategy for simplifying database configuration and management.

Database administrators face constant challenges managing database storage, such as tuning input/output (I/O) performance
and managing disk space. Configuring and tuning databases for optimal performance requires a good deal of platform-
specific expertise. Database administrators must be familiar with the different supported I/O types on the platforms they
manage. This is particularly challenging for administrators who are managing databases on multiple platforms.

Oracle Disk Manager offers a simpler environment for managing and tuning Oracle databases. Using Oracle Disk Manager,
all platform-specific, I/O-related calls and settings are unnecessary. Oracle automatically detects if Oracle Disk Manager is
present and uses it. All I/O operations are supported on file system files and raw partitions — even asynchronous I/O. Using
Oracle Disk Manager, administrators can have the manageability of file system storage without sacrificing performance.

Oracle Disk Manager is an application programming interface (API) for I/O and file management system which Oracle Corp.
designed. Oracle9i is the first release to use it.

The first commercial software built to support the Oracle Disk Manager API is VERITAS Database Edition™ 3.0 for Oracle —
an integrated file system/volume management solution optimized to support Oracle databases.

The performance metrics in this paper reflect the implementation of Oracle Disk Manager using Database Edition for Oracle.

This paper first describes the Oracle Disk Manager features, then provides a benchmark performance analysis comparing
complex Oracle9i workloads on file systems and raw partitions with and without it. Our testing confirms the claim that
Oracle Disk Manager offers equivalent throughput for raw partitions and file systems and demonstrates other efficiencies
leading to better processor utilization.

P a g e 1T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

http://www.veritas.com/products/category/ProductDetail.jhtml?productId=oracleeditionsun

Background: I/O Complexity

Oracle databases operate in increasingly complex environments. Oracle instances routinely service a large number of
concurrent requests involving table and index scans, single block and scattered reads, as well as temporary segment reads.
At the same time, background database processes also are operating. The Database Writer processes, for example, conduct
large, asynchronous batch writes. Add to this the need for occasional tablespace auto-extension and temporary tablespace
creation, and you have an extremely complex disk I/O profile.

To support this wide variety of functions, each platform-specific port of the Oracle server uses a collection of routines from
the standard C library, POSIX libraries, and, on most platforms, proprietary interfaces crafted specifically for database servers.
Database administrators must worry about which init.ora parameters to use and whether specific I/O features, such as
asynchronous I/O, are supported on various platforms. The technotes and newsgroups are riddled with questions about
interfaces such as read(), write(), lio_listio(), kaio(), pread(), pwrite(), aio_read() and aio_write(). Ideally, database
administrators should not have to be concerned with these low-level I/O details.

The problem of complexity is particularly acute in heterogeneous environments, where port-specific differences are evident.
A database administrator responsible for multiple platforms needs a good deal of platform-specific expertise to tune an
Oracle instance for optimal I/O performance. Additional server functionality, such as Parallel Server and Parallel Query, only
make the low-level file I/O details more significant.

Oracle Corp. designed the Oracle Disk Manager interface to address these challenges. Oracle Disk Manager reduces
complexity for database administrators by allowing all datafile I/O types on file systems and raw partitions, using a single
system call.

Oracle Disk Manager supports raw partitions and file systems. Because file system files are easier to manage, they are
expected to be the natural choice for Oracle9i databases. Oracle Disk Manager supports raw partition, file system and mixed
file types, which benefits existing databases and supports migration from raw partitions to file system files.

Oracle Disk Manager includes an advanced file management infrastructure that enables the Oracle server to create and
initialize a file in an atomic operation, automating a common administrative task. It also eliminates the use of file descriptors,
which further reduces operating system-specific configuration issues.

P a g e 2 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

Oracle Disk Manager Features

Oracle Disk Manager features are implemented through a combination of operating system kernel functionality and a set of
library modules conforming to the API which Oracle specified.

The Oracle Disk Manager features can be categorized as follows:

• Advanced support for file system I/O

• File management features

• File identification features

Each of these feature sets is described below.

Advanced Support for File System I/O

Oracle Disk Manager puts to rest the debate about whether to store datafiles in file systems or raw partitions.

Historically, database administrators choose between file system files and raw partition storage by selecting the “lesser of
two evils.” File system files are easier to manage, but raw partitions provide better I/O performance. An application that
doesn’t have substantial I/O requirements when initially deployed may change over time. In many cases, this forces
administrators to migrate datafiles from file systems to raw partitions.

Other solutions, such as UNIX file system mount options, have mitigated many of the performance considerations for file
systems. None has completely silenced the discussion. On most platforms, advanced functions such as true asynchronous
Database Writer and Log Writer flushing have been available only for raw partitions.

This changes with Oracle Disk Manager. Oracle Disk Manager I/O uses a single call: odm_io(). The odm_io() call supports all
Oracle file I/O types, including sequential reads, sequential writes, direct reads, direct writes, scattered reads, Database Writer
batch writes, Log Writer Redo Log buffer flushing and archiving of Redo Logs by the Archiver process. All of these I/O types
are enhanced on file system files and raw partitions .

Oracle9i still supports datafiles on file systems that do not support Oracle Disk Manager, using non-Oracle Disk Manager
internals. This minimizes disruption while migrating datafiles into a compliant file system.

Oracle Disk Manager simplifies configuration because it requires no init.ora parameters or system-tunable parameters. It also
allows administrators to store datafiles in file system files without sacrificing performance or advanced I/O capabilities.

File Management Features

Managing space for large, complex databases is a time-consuming and difficult job. Routine tasks such as adding and
naming datafiles are prone to mistakes. Databases with unpredictable growth pose capacity planning challenges.

Oracle9i with Oracle Disk Manager simplifies these tasks with atomic file creation and Oracle Managed File support.

P a g e 3T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

Atomic File Creation

When the Oracle server is initializing a new datafile, any number of things can go wrong. The database administrator must
clean up from the point of failure, which may entail removing a file from a file system that was too small for the data being
added. On large systems with many existing datafiles, these cleanup operations can be dangerous.

Oracle Disk Manager reduces the failures that can occur when adding a datafile to a database. With this product, Oracle no
longer uses C library routines such as open(2), read(2) and write(2) to create and initialize datafiles. Instead, Oracle uses the
following disk manager routines:

• odm_create()

• odm_commit()

• odm_abort()

Oracle Disk Manager treats these routines as an atomic file operation; an Oracle datafile is not a file in the file system until
Oracle has initialized it fully and called odm_commit(). If an Oracle failure occurs during the operation, before odm_commit(),
the file never even appears in the file system.

Contiguous file system space allocation is the other essential benefit of the disk manager file creation functionality. In traditional
file system files, the disk space allocated to a file is not contiguous. The potential degradation of table scan throughput for
noncontiguous datafiles is one of the factors that drives database administrators to choose raw partitions for datafile storage.
Datafiles created with Oracle Disk Manager consist of contiguous file system blocks.

Oracle Disk Manager files look and feel like any file system file, without special naming extensions or file system mount options.

Oracle Managed File Support

As part of its effort to reduce administrative complexity, Oracle9i offers a feature called Oracle Managed Files (OMF). Oracle
Managed Files manages datafile attributes such as file names, file locations, storage attributes and whether the file is used in
a database. For a comprehensive overview of the feature set, see the Oracle9i Administrator’s Guide.

Oracle Managed Files requires file system storage. It eliminates the mundane task of providing unique file names and offers
dynamic space management using the auto-extend functionality of Oracle9i. Oracle Managed Files should be used only in
file systems residing in striped/RAID-configured logical volumes that can support dynamic file system growth. File systems
intended for Oracle Managed Files use should support large (greater than 2 GB), extensible files to enable tablespace auto-
extension.

Managing a large database traditionally means tracking a large number of files. Choosing the Oracle Managed File
infrastructure allows database administrators to think of tablespaces, online redo log files and control files as database
objects rather than collections of datafiles — simplifying database administration.

Oracle Managed Files are created with the auto-extend capability by default. Using this feature significantly reduces the
capacity planning associated with maintaining existing applications and deploying new databases. In the past, database
administrators have been cautious about using auto-extend because of concerns about file system fragmentation. Oracle Disk
Manager eliminates this concern through the introduction of the odm_resize() routine, which allocates contiguous file system
blocks to files. Eliminating potential fragmentation assures that table and index scan throughput does not degrade as the
tablespace grows.

P a g e 4 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

File Identification

Traditionally, the Oracle server uses the standard C library open(2) system call to obtain a file descriptor from the operating
system. It then uses that file descriptor to perform file operations such as reading and writing.

File descriptors require an allocation structure in the operating system kernel. Although they are not large data structures, a
server hosting a large Oracle database will have many kernel structures allocated as file descriptors for open files. For example,
consider an Oracle database consisting of 200 datafiles, with 1,000 processes attached to the instance. If all processes open
all files, the operating system kernel would need to provide for 200,000 active file descriptors.

To support “file open” calls for all processes on all datafiles, administrators must tune systemwide and per-process limits.
For a large database, the administrator may need to set the systemwide limit for open files to more than 500,000. (A 1 TB
database with files limited to 2 GB would have 500 datafiles; supporting 1,000 attached processes, requires 500,000 active
file descriptors.)

Although today’s UNIX implementations can handle these kernel requirements, this clearly is wasteful. Kernel-managed file
descriptors require concurrency control. On multiprocessor systems, the kernel “open file” list typically is protected with
locking, such as a spinlock or an intelligent mutex primitive. Other system calls, such as exec(2) and exit(2), require implicit
“file open” and “close” operations. On an active server, this locking uses an unnecessary amount of kernel mode
processing.

An Oracle Disk Manager file identifier replaces the file descriptor, eliminating this operating system overhead. File identifiers
are obtained with the odm_identify() routine.

Oracle Disk Manager file identifiers are shareable — once a file has been identified, subsequent processes using the shared
identifier do not incur any kernel overhead. No matter how many active Oracle Disk Manager file identifiers are in use, there
are no operating system tunable parameters to adjust.

The majority of Oracle Disk Manager file identification occurs at instance startup:

• The Database Writer process executes odm_identify() on all datafiles

• The CKPT process identifies the control files

• Log Writer process identifies the online redo log files

Each of these processes caches the returned information in the SGA, which subsequent processes that attach to the instance
use. Using shareable, cached disk manager identifiers makes large operating system file descriptor tables a thing of the past.

Oracle Disk Manager file identifiers also enhance reliability. Calls to access a file through odm_identify() are regulated using a
special key value that Oracle attributes to a database. For large, complex server systems hosting multiple applications and
Oracle instances, this eliminates the possibility of two non-participating instances opening a datafile. Without Oracle Disk
Manager, it is conceivable that this could occur.

P a g e 5T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

Oracle Disk Manager Performance

One objective of the Oracle Disk Manager is to provide equivalent performance for file system and raw partition I/O. To test
the success of this goal, VERITAS conducted comprehensive performance tests.

Performance Testing Background

The workloads were based on an order entry and product tracking online transaction processing (OLTP) application. The
database contained approximately 150 GB of table storage, with additional index overhead. The system was configured
with 12 processors and 12 GB of main memory.

Workloads

The test suite consisted of four separate workloads, ensuring broad coverage of Oracle Disk Manager and Oracle9i
functionality. Figure 1 describes the individual tests.

Figure 1. Test Workload Descriptions

Users

Large user-count testing was an essential attribute of the test suite. All 1,000 pseudo-users were attached to the database
instance with a dedicated connection, with no transaction monitor in use. Each pseudo-user had a distinct user account in
the database. This is a key difference from performance studies in which all pseudo-users are connected through the same
account. Because most user installations establish user accounts and permissions, it is important to treat the pseudo-users as
separate users.

The test was configured with a client/server workload, with clients connecting using the SQL*Net BEQUEATH driver.

Because the clients were configured to use dedicated server processes, there were roughly 2,000 processes on the system
under test and transactions were executed with one-second think time.

P a g e 6 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

Workload Description

Insert-intensive: Taking orders, adding customers, stock, new products

Select-intensive: Reports (shipment status, stock level, customer info), ad hoc query

Update-intensive: Order amendment, account updates

Deletes: Closing customer accounts, item discontinuation

Insert-intensive: Taking orders, adding customers, stock, new products

Update-intensive: Order amendment, account updates

Select-intensive: Reports (shipment status, stock level, customer info), ad hoc query

Select-intensive: Reports (shipment status, stock level, customer info)

Select-intensive: Ad hoc query

9

64

26

1

3

91

6

100

100

Mixed OLTP

Modify-Intensive

Reporting

Query-Intensive

Test Name Transaction Type Percent

Database Configuration

The tests use Oracle9i beta as the database engine.

The database was created on a set of VERITAS Volume Manager™ raw volumes. The first tests were run with standard
Oracle9i, then with Oracle9i and Oracle Disk Manager. The database then was recreated on a single VERITAS File System™

and tested with Oracle Disk Manager-enabled Oracle9i to ensure equal performance on file systems.

In all cases, the physical database layout adhered to the S.A.M.E. methodology. The database block size was 4,096 bytes and
the init.ora parameter db_block_buffers was set to 300,000.

Table accesses were largely random. An SGA disk block buffer cache of 1.2 GB was used in all cases to fully stress the disk
I/O subsystem.

Throughout the performance results shown in this paper, datapoints labeled “Non-ODM” were derived from tests run using
standard Oracle9i on raw volumes.

Objectives

The primary focus of this study was throughput and scalability. We also were interested in essential system indicators related
to improved software performance, such as system calls, context switches and kernel-locking overhead. As Oracle Disk
Manager offers improved system call profiles for the Database Writer and Log Writer processes, we also tracked processor
utilization for these processes.

The workload entitled “Mixed OLTP” is the most rigorous of the workloads in the test suite. For the sake of brevity, this
paper focuses more on that workload than the others.

Performance Observations

Oracle Disk Manager is designed to improve data manageability through the use of advanced Oracle9i features on file
system files. Data manageability is difficult to benchmark; features such as Oracle Managed Files cannot be tested by
benchmarks. Nevertheless, performance degradation while using these features is unacceptable. Therefore, the first critical
performance test was to determine that there is no measurable variance between standard Oracle9i on raw volumes and
Oracle9i using Oracle Disk Manager on either raw volumes or file system files.

Our performance test bore out that objective, showing that Oracle Disk Manager does not inflict any performance penalty.

Throughtput and Scalability

The first figure shows the results for the mixed OLTP workload with and without Oracle Disk Manager. Scalability is measured
by the performance on two, four, eight and 12 processors.

P a g e 7T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

http://www.veritas.com/products/category/ProductDetail.jhtml?productId=filesystem
http://www.veritas.com/products/category/ProductDetail.jhtml?productId=volumemanagerunix

Figure 2. Comparing ODM and non-ODM throughput for mixed workloads

As Figure 2 shows, running the mixed OLTP workload in the VERITAS File System (VxFS) using Oracle Disk Manager did not
cause any reduction in throughput or scalability. This observation uses the mixed OLTP workload, the most difficult of the
four workloads in the test suite.

Performance improvements vary based on workload characteristics. In fact, Oracle Disk Manager offers a slight performance
improvement (4 percent) for the query-intensive workload:

Figure 3. Query-intensive workload throughput, with and without ODM

The reporting workload showed a 6 percent improvement in throughput with Oracle Disk Manager:

Figure 4. Reporting workload throughput, with and without ODM

P a g e 8 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

150 GB Scale Mixed OLTP Workload

100
300
500
700
900

1100

1300
1500

2 4 6 8 10 12

CPUs

TPS
Non-ODM

ODM VxFS

ODM Raw

1100

1300

1500

1700

1900

TPS

Query Intensive

150 GB Scale Query Intensive

 Workload

Non-ODM

ODM VxFS

2000

2400

2800

3200

TPS

Reporting

150 GB Scale Reporting Workload

Non-ODM

ODM VxFS

Other System Characteristics

Oracle Disk Manager introduces locking efficiencies which reduce bottlenecks in the operating system code path.

Reducing locking contention in the operating system should increase transaction throughput. However, if the workload incurs
disk I/O at a fixed rate, reducing software bottlenecks may increase the demand for disk I/O. Depending on the disk subsystem
load, this may result in little more than increased service times for I/O. For software improvements to increase throughput on
disk-intensive workloads, there must be sufficient disk subsystem bandwidth to handle the additional I/O requests.

Because the disk I/O subsystem configuration remained constant throughout the testing, only a finite amount of additional
I/O requests could be serviced. To see the effect of the software changes, we need to take a closer look at other system
characteristics, in addition to the simple throughput metric.

Figure 5 below shows improvement in locking behavior using Oracle Disk Manager.

Figure 5. Reduced locking contention with ODM than with non-ODM on reporting workload

Oracle Disk Manager reduces kernel-adaptive, mutex lock operations on the reporting workload by 9 percent. It reduces the
sheer count of spins on mutexes in the operating system kernel by 5 percent.

Reducing kernel-mode processor overhead is a winning proposition for any workload. Even if the workload can’t generate
more throughput due to bottlenecks elsewhere, other processes on the system can take advantage of the processor cycles
once they are available.

For example, consider a system primarily loaded with a payroll application. By identifying the most processor-intensive SQL
statement in that application and tuning its query plan, you can free processor cycles so the payroll application consumes
fewer processor cycles per transaction.

Reducing the processor overhead on a query plan generally hastens its accesses to disk. For example, you might be able to
replace a nested-loop join with a sort-merge join. A sort-merge join generally is less processor-intensive, but the query plan
still accesses the same data set. If more disk bandwidth is available, the payroll application may be able to handle more
transactions. If it is I/O-bound, however, this improvement results in higher service times for payroll I/O requests. However,
the payroll application still will be consuming fewer processor cycles. Other applications on the system can use the cycles
made available by tuning payroll.

In the case of the test workloads, the reporting workload already was using a good portion of the available disk subsystem
bandwidth, leaving little room for additional throughput when Oracle Disk Manager was enabled. The result was a 6 percent
increase in throughput, with a reduction in kernel overhead.

Looking at the throughput for mixed OLTP and update-iIntensive workloads, Oracle Disk Manager on file systems delivered
close to the same throughput as raw volumes without it — exactly what the product is expected to offer:

P a g e 9T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

2500

3500

4500

5500

SMTX/sec MutexOps/sec

Locking Improvements, Reporting Workload

Non-ODM

ODM VxFS

Figure 6. Throughput is roughly equivalent with ODM file systems and non-ODM raw partitions, but...

However, Figure 6 doesn’t tell the whole story.

Because Disk Manager does more with fewer system calls, the mixed OLTP workload saw relief in terms of reduced system calls
and context switches. Figure 7 shows a reduction of 9 percent and 6 percent in system calls and context switches, respectively.

Figure 7. ODM reduces system calls and context switches

The mixed OLTP workload generates significant contention in the Oracle server. Internal contention can be detected in Oracle
performance statistics such as “latch-free” and “busy buffer” waits. Reducing contention external to Oracle often relieves
internal Oracle contention. In the case of Disk Manager, improving operating system characteristics (such as context switches,
system calls and kernel locking) can alleviate internal Oracle contention.

P a g e 10 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

0

400

800

1200

1600

TPS

Mixed OLTP Update Intensive

150 GB Scale Mixed OLTP and Update

Intensive Workloads

Non-ODM

ODM VxFS

20000

25000

30000

35000

40000

45000

50000

Sys Calls CSW

System Call and Context Switch Statistics
Mixed OLTP Workload

Non-ODM

ODM VxFS

Figure 8 compares the Oracle “latch-free” wait events in non-Disk Manager and Disk Manager test cases.

Figure 8. ODM usage helps reduce Oraclel latch sleeps

Oracle Disk Manager reduces “latch-free” wait events by 9.8 percent in the mixed OLTP workload.

Oracle Disk Manager also reduces “buffer busy” waits by 7 percent in this test case:

Figure 9. Oracle “busy buffer” waits improve with ODM

Log Writer and Database Writer Processes

The most dramatic variation using Oracle Disk Manager is in the Database Writer and Log Writer processes. Because odm_io()
allows the calling process to perform I/O for a large number of requests bound for many different files with a single call,
these processes have a simpler system call profile. In the case of Database Writer, Disk Manager significantly reduces
processor utilization.

Database Writer processes perform large batch writes, often flushing hundreds of modified SGA buffers to many different
files. To do so optimally, these writes must be asynchronous. Without Oracle Disk Manager, most platforms force Database
Writer to make a system call for each buffer being flushed. Once all the I/O requests are in flight, Database Writer enters a
loop of polling for completed I/O requests. If the write batch consists of 1,000 dirty buffers, this translates into at least 1,000
system calls, plus however many calls are made to poll for all the completions.

Oracle Disk Manager allows the Database Writer to send any number of I/O requests to the operating system kernel with
a single call to odm_io(). Polling for completed requests also is done with odm_io(). Compared to generic I/O completion
polling routines, odm_io() is much more robust. The net effect is a dramatic reduction in processor cycles that Database
Writer consumes per buffer-flushing operation. Depending on workload characteristics, reducing Database Writer processor
utilization can increase overall throughput. The benefit depends on the percentage of all processor cycles that Database
Writer processes consume.

Remember that Database Writer processes are rarely an absolute bottleneck since the advent of multiple true Database
Writers — a feature introduced in Oracle8i. When Database Writer throughput is a bottleneck, it is simple to configure
another one by increasing the value assigned to the init.ora parameter db_writer_processes. However, reducing the
processing cost for the Database Writer activity on a whole is positive.

P a g e 11T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

25000

35000

45000

55000

Latch Sleeps

Oracle Latch Sleeps.
Mixed OLTP Workload

Non-ODM

ODM VxFS

2500

3500

4500

5500

Buffer Busy
Waits

Buffer Busy Waits
Mixed OLTP Workload

Non-ODM

ODM VxFS

For the non-Disk Manager, mixed OLTP workload, Database Writer consumes a mere 3 percent of all processor cycles. Given
the fact that the test system was configured with 12 processors, this 3 percent equates to roughly one-third of one processor.
However, it is important to point out that given these parameters, Oracle Disk Manager significantly reduced processor cycles
the Database Writers use — a trait which should hold true for any workload. Figure 10 shows that Oracle Disk Manager
reduces the total Database Writer processor utilization by 39 percent.

Figure 10. ODM reduces Database Writer processor utilization

Although database administrators can add more Database Writer processes to address a bottleneck, each Oracle instance
can have only one Log Writer process. Applications that generate a large number of Redo Log entries sometimes can run the
Log Writer process at 100 percent processor utilization. Once Log Writer consumes 100 percent of a processor, there is no
more bandwidth for transaction throughput, even if other processors are idle.

The Log Writer process is not typically processor-bound, although it is busy when handling a modify-intensive mix of
transactions. When performing a Redo Log flush, Log Writer uses asynchronous I/O if there are more redo records to write
than can be performed in a single I/O call. For example, if Log Writer has 3 MB of redo records to flush, it may issue three
asynchronous writes of 1 MB each, depending on the platform.

Using Oracle Disk Manager, the Log Writer process consumed 19 percent fewer processor cycles for the mixed OLTP
workload than the non-Disk Manager test case.

Figure 11. ODM reduces Log Writer processor utilization

Reducing the Log Writer's processor consumption by 19 percent would improve performance on some applications if the
Log Writer was causing a performance problem.

P a g e 12 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

250

450

650
Seconds

CPU

Database Writer Processor Consumption

Mixed OLTP - 30 Minute Test Interval

 Non-ODM

ODM VxFS

100

150

200

Seconds
CPU

Log Writer Processor Consumption
Mixed OLTP - 30 Minute Test Interval

Non-ODM

ODM VxFS

Oracle Parallel Server

For most Oracle Parallel Server (OPS) implementations, there is no choice but to store databases in raw partitions. Most
platforms supporting Oracle Parallel Server require that the physical database reside in raw partitions visible to other nodes
in the cluster. This applies to all database files, including online redo log files and control files.

These requirements predate the emergence of cluster file system offerings. Oracle Parallel Server is supported on clustered
file systems as long as the platform provides a raw access path to the files in the file system. In other words, as long as there
is no buffering in the system cache, a file system doesn’t interfere with Oracle Parallel Server.

Not all applications demand the enhanced availability and out-of-the-box scalability of Oralce Parallel Server or Real Application
Clusters (RACs) when they are deployed. However, availability and scalability issues may become more important as the
application becomes more closely tied to the core operations of the business. If you use Oracle9i, choosing Oracle Disk
Manager on the VERITAS File System for non-clustered applications does not create problems for moving to Oracle9i RACs
in the future.

By deploying these applications using Oracle Disk Manager, you can avoid migrating databases to raw partitions to support
Real Application Clusters. VERITAS is developing a version of the Database Edition for Oracle that supports Oracle Disk
Manager and Real Application Clusters. Converting an existing VERITAS file system for use in a cluster does not require
moving any data.

P a g e 13T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o nw w w . v e r i t a s . c o m

Summary

For too long, database administrators have had to choose raw partition storage and concern themselves with platform-
specific, low-level I/O operations to optimize database performance.

Oracle Disk Manager finally solves these long-standing problems. It simplifies database management by enabling
administrators to choose file system storage without performance penalties. And by improving file management, file
auto-extension and file identification processes.

At the same time, Oracle Disk Manager increases application performance — if not in raw throughput, then through
reduced contention and improved processor utilization.

Oracle Disk Manager helps cut through the complexity of Oracle configuration and tuning, offering a rare commodity in
today’s complex data center — a simple choice.

P a g e 14 T h e O r a c l e D i s k M a n a g e r A P I : A S t u d y O f T h e V E R I TA S I m p l e m e n t a t i o n w w w . v e r i t a s . c o m

V
E

R
I

T
A

S

W
H

I
T

E

P
A

P
E

R

VERITAS Software Corporation
Corporate Headquarters
1600 Plymouth Street
Mountain View, CA 94043
650-527-8000 or 800-327-2232

For additional information about VERITAS
Software, its products, or the location of an
office near you, please call our corporate
headquarters or visit our Web site at
www.veritas.com

Copyright © 2001 VERITAS Software Corporation. All Rights Reserved. VERITAS, VERITAS SOFTWARE, the VERITAS logo, Business Without Interruption, VERITAS The Data
Availability Company, VERITAS Database Edition, VERITAS File System and VERITAS Volume Manager are trademarks or registered trademarks of VERITAS Software
Corporation in the U.S. and/or other countries. Other product names mentioned herein may be trademarks or registered trademarks of their respective companies.
Specifications and product offerings subject to change without notice. Printed in USA. July 2001.

90-01553-399

	Table of Contents
	Overview
	Background: I/O Complexity
	Oracle Disk Manager Features
	Advanced Support for File System I/O
	File Management Features
	Atomic File Creation
	Oracle Managed File Support
	File Identification

	Oracle Disk Manager Performance
	Performance Testing Background
	Workloads
	Users
	Database Configuration
	Objectives

	Performance Observations
	Throughtput and Scalability
	Other System Characteristics
	Log Writer and Database Writer Processes

	Oracle Parallel Server
	Summary
	Contacts

